党亚峥

职称/职务:副教授 硕士生导师

主要研究领域:金融优化 智能优化 数字金融 包容性增长

电子邮箱:jgdyz@163.com

办公室:beat365中国官方网站906室

教育背景与工作经历

博士,系统分析与集成 ,beat365中国官方网站

硕士,应用数学,河南理工大学

学士 , 数学教育 ,河南大学

2013.05--2013.12,访问学者,新加坡国立大学

2018.08-2019.08 访问学者,科廷大学



教研项目及成果

1.国家自然科学基金面上项目,NO.11171221,基于非光滑分析与优化方法的混杂博弈研究,2012/01-2015/12,48万,已结题,参加

2.国家自然科学基金面上项目,NO.71572113,大数据背景下的服务系统质量智能监控研究-以联络中心为例,2017/01-2020/12,60万,在研,参加

3. 上海市自然基金项目,N0.14ZR1429200,凸可行问题的束方法及其收敛性研究,2014/07-2017/06,,主持

4 上海市教委科研计划,NO.15ZZ073,捆集法在混杂博弈中的应用,2015/01-2017/12,,主持

 

主讲课程

最优化理论(硕士生)

高级运筹学(硕士生)

概率统计(硕士生)

运筹学(本科)

统计学(本科)

时间序列分析(本科)

学术活动与社会服务

代表性论著

1.YazhengDang#,Zhonghui Xue*, Yan Gao,Fast self-adaptive regularization iterativealgorithm for solving split feasibility problem,Journal of Industrial and ManagementOptimization, 2019,

2.YazhengDang#,Jian Yao*,Yan Gao,Relaxed two points projection method for solving themultiple-sets split equality problem,Numerical Algorithms,2018  7(8): 263-275

3.YazhengDang#,Jie Sun,Su Zhang*,Double projection algorithms for solving the splitfeasibility problems,Journal of Industrial and Management Optimization  2018 13(5):1-12

 

期刊论文

1.YazhengDang, Jian Yao and Yan Gao. Relaxed two points projection method for solvingmultiple-sets split equality problem. Numerical Algorithm. 2017,1-13(SCI)

2.YazhengDang,Wenwen Liu. A Nonmonotone Projection Method for Constrained System of NonlinearEquations, Mathematical Problems in Engineering, 2017.1-18(SCI)

3.YazhengDang, Jie Sun. Inertial Accelerated Algorithms for Solving Split FeasibilityProblem, Journal of Industrial and Management Optimization, 2017, 13(3):1383-1394. (SCI)

4.Yazheng Dang, Yan Gao, Bo Wang. A new Extragradient-type algorithm for thesplit feasibility problem, Mathematical Problems in Engineering, 2016. (SCI)

5.Yazheng Dang. Hybrid CQ projection algorithm with line-search process for thesplit feasibility problem, Journal of Inequalities and Applications, 2016. (SCI)

6.Yazheng Dang, Yan Gao. Non-monotonous sequential subgradient projectionalgorithm for convex feasibility problem, Acta Mathematicae ApplicataeSinica-English Series, 2016.12-17(SCI)

7.YazhengDang, Zhonghui Xue, Yan Gao.Iterative process for solving a multiple-set splitfeasibility problem,Journal of Inequalities and Applications,2015(1), 1-47(SCI)

8.Yazheng Dang, Yan Gao. Bi-extrapolated subgradient projection algorithm forsolving multiple-sets split feasibility problem. Applied Mathematics a Journalof Chinese Universities. 2014 (3), 283-294. (SCI)

9.Yazheng Dang ,Yan Gao. A new simultaneous subgradient projection algorithm forsolving a multiple-sets split feasibility problem. Applications of Mathematics.2014(1).37-51. (SCI)

10.Yazheng Dang, Convergence of an algorithm for the split common fixed-point ofasymptomatic quasi-nonexpansive operators,Pacific Journal of Optimization,2014.01.01,10(3): 453~460(SCI)

11.Yazheng Dang,Yan Gao. The strong convergence of a three-step algorithm for thesplit feasibility problems, Optimization Letter.2013(7).1325-1339. (SCI)

12.Yazheng Dang, Yan Gao. Inertial iteration for split common fixed-point problemfor quasi-nonexpansive operator.Abstract and Applied Analysis.2013(07).1-5. (SCI)

13.Yazheng Dang, Yan Gao..Non-monotonous accelerated parallel subgradientprojection algorithm for convex feasibility problemoptimization.2014(4).571-584. (SCI)

14.Yazheng Dang, Yan Gao. Weak and strong convergence of an algorithm for thesplit common fixed-point of asymptotically quasi-nonexpansiveoperators.Mathematical Problems in Engineering.2013(6).1-5. (SCI)

15.Yazheng Dang, Yan Gao. Inertial projection algorithms for convex feasibilityproblem. System Engineering and Electronic Techniques(English). 2012(5).54-60. (SCI)

16.Yazheng Dang, Yan Gao.. An extrapolated iterative algorithm for multile-setsplit feasibility problem. Abstract and Applied Analysis.2012(4).p56-p60. (SCI)

17.Yazheng Dang, Yan Gao.. A perturbed projection algorithm with inertialtechnique for split feasibility problem. Journal of  Applied Mathematics. 2012(2).78-83. (SCI)

18.Yazheng Dang and Yan Gao, The Strong Convergence of a KM-CQ-like Algorithm fora Split Feasibility Problem, Inverse Problems Vol. 27, No.1, article 015007, p.9, 2011. (SCI)


荣誉